EMILE : Enseignement d'une Matière Intégrée à une Langue Étrangère

How does it work?

Rule 1

 01 Rule1

Rule 2

 02 Rule2

In 3×3 questions, each row and each column are consisted of 1, 2, 3.
In 4×4 questions, each row and each column are consisted of 1, 2, 3, 4.

 Rule 3

 03 Rule3

Each group of grids has to satisfy requires calculation formulas.

There are four different calculation signs : +, -, × and ÷

 Rule 4

Beside those signs, there is another type of group consisted of grids, which do not have calculation signs. At this time, this grid represents number shown on the top-left corner, as shown in following figures.


Numbers of each group can be repetitive but they have to satisfy the rule number one (numbers cannot be repetitive in each column and each row).

04 Rule4 


Activity #1:

Kendoku 3×

05 Kendoku3

Kendoku 4×4

05 Kendoku4

Kendoku 6×6

05 Kendoku6

 Kendoku 7×7 (normal)

05 Kendoku7

 Kendoku 7×7(hard)

05 Kendoku7hard

 Kendoku 8×8

05 Kendoku8

(0 votes)
Date Lun-10-19
Taille du fichier 235.9 KB
Téléchargement 574
(0 votes)
Date Lun-10-19
Taille du fichier 164.17 KB
Téléchargement 527

Activity #2: How to create a kendoku?


Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Draw an empty table.


Fill it up with numbers respecting the 4 rules.


Choose patterns (not to large) in the table.


Select for each pattern an operation and indicate the result.


Erase all numbers in the cages.



 Go ahead!

Step 0: Trace a 6×6 grid.

Step 1: Fill a 6×6 grid with numbers from 1 to 6 respecting rules of Kendoku.

Step 2: Choose patterns on the grid.

Step 3: Choose operation for each pattern and calculate the result.

Step 4: Indicate a bare new grid with patterns, results and operations.


(0 votes)
Date Lun-10-19
Taille du fichier 38.79 KB
Téléchargement 555